

Hydraulic Fracturing and Shale Gas Production: Technology, Impacts, and Policy

Andy Burnham

Center for Transportation Research

Argonne National Laboratory

Clean Cities Peer Exchange and Vehicle Technology Deployment Workshop Estes Park, CO
September 27, 2012

Shale Gas Described as a "Game Changer"

- Projected to account for ~50% of U.S. production in 2035
- Created interest in expanding NG use in several sectors
- But what are the environmental impacts?

Source: EIA - Annual Energy Outlook 2011

How is Shale Gas Different than Other Types of Gas Production?

- Economic production has been made possible due to
 - Horizontal drilling
 - Hydraulic fracturing (aka "fracking")

Several Plays in Areas Without Recent Gas Production Experience

Production Near Residential & Urban Areas Has Increased Scrutiny

Fracking is Misused as Umbrella Term for Shale Gas Production

- Fracking is one of many steps in shale gas development
 - Many of the risks are not from fracking
- Production steps include:
 - Road/well pad construction
 - Drilling
 - Casing
 - Hydraulic fracturing
 - Water management
 - Gas production
 - Well abandonment & reclamation

Potential Environmental Impacts from Shale Gas Development

- Water Consumption
- Water Quality
- Greenhouse Gas Emissions
- Local Air Pollution
- Earthquakes
- Community Impacts

Source: Andy Burnham

Source: Chris Harto

Water Consumption - Impacts and Mitigation

- 2-6 million gallons of water required to frack a shale gas well
- Consumption is small compared to other uses
 - <1% of total use in a water basin</p>
- Withdrawal may still strain communities due to local conditions, competing demands, etc.
- Increasingly operators are recycling "flowback" water
 - Reduces fresh water consumption & wastewater disposal

Source: Chris Harto

Source: Chris Harto

Water Quality - Impacts

- No known incidents of frack chemicals migrating into underground drinking water
 - Possible case in WY but results of EPA study controversial
- Multiple incidents involving surface water contamination from spills
 - Water management is necessary
- Multiple events of <u>natural gas migration</u> into groundwater due to <u>poor well construction</u>
 - Not due to hydraulic fracturing
 - Casing/cementing are key to limiting impacts

Source: Andy Burnham

Water Quality - Regulation and Mitigation

- <u>EPA</u> authority on <u>underground injection</u> limited under Safe Drinking Water Act
 - EPA regulates surface water disposal & has imposed penalties
- Bureau of Land Management draft rules for development on public lands include:
 - Disclosure of frack fluid composition
 - Wellbore integrity (well construction requirements)

Source: Chris Harto

- Water regulation occurs primarily at the state level
 - Typically focus on disclosure
 - Can also include disposal methods
 - PA effectively outlawed discharging to surface water
 - Some regulate wellbore integrity

State Regulations: Disclosure Laws and Bans

Notes:

White states have no disclosure law and no current hydraulic fracturing activity Grey states have no disclosure law and some hydraulic fracturing activity

Source: McFeeley, 2012; Courtesy diymaps.net

Greenhouse Gas Emissions: Impacts

- EPA estimates of <u>CH₄ leakage</u> from natural gas have <u>increased significantly</u>
- Shale gas well leakage large in theory
 - But industry reports that a significant amount is captured
 - Data is limited & lack of transparency
- Using latest estimates of leakage, shale gas provides:
 - Large GHG benefit for NG power plants as compared to coal
 - Small GHG benefit for NG cars & trucks as compared to gasoline/diesel

Local Air Pollution and GHG - Impacts and Mitigation

- Some state inventories show <u>oil & gas operations</u> as <u>major sources of local air pollution</u>
- <u>Limited analysis</u> done on <u>health impacts</u> of shale gas production
 - Texas is working on a Barnett Shale inventory
 - VOCs and hazardous air pollutants (HAPs) can escape during flowback & NGL storage tanks
 - NO_x produced from engines powering on-site equip.
- 2012 EPA rules expected to <u>reduce VOCs at shale</u> gas wells by ~90%
 - Reduce NG industry VOCs, HAPs, and CH₄ by ~10%
 - Requires flaring or reduced emission completions
 - Many technologies reduce gas leakage & emissions

Source: marcellus-shale.us

Source: marcellus-shale.us

Earthquakes - Impacts and Mitigation

- Injection of flowback water into disposal wells linked to minor earthquakes in Arkansas & Ohio
 - Not due to fracking
- Recent National Research Council study concludes fracking does not pose major risk for producing earthquakes
- Properly sited injection wells will not cause earthquakes
 - Majority of disposal wells do not pose a hazard

Source: Chris Harto

Source: Chris Harto

Community - Impacts and Mitigation

- Shale gas production is an industrial process
 - Concerns amplified when near residential & urban areas
 - Many issues only last during drilling & fracking (~6 months)
- Potential impacts include:
 - Noise pollution
 - Light pollution
 - Increased traffic/road degradation
- Industry must engage communities & improve on best practices
 - Using sound barriers
 - Limiting hours of operation

Source: Andy Burnham

Source: Andy Burnham

Summary

- Shale gas represents a large potential resource for domestic natural gas
- However it must be produced in a manner that protects both the environment and human health
- Shale gas production is an industrial process and there are associated risks
- While all risks are not fully understood, analysis to date shows they are manageable
 - Most incidents were preventable
 - Many risks are inherent to oil & gas production and not related to fracking
 - Regulation and technology development are addressing many of the issues

Thank you!!!

Argonne National Laboratory's work is supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

This work has been supported and assisted by:

Linda Bluestein: U.S. Department of Energy

Dennis Smith: U.S. Department of Energy

Michael Wang: Argonne National Laboratory

Marcy Rood Werpy: Argonne National Laboratory

Corrie Clark: Argonne National Laboratory

Christopher Harto: Argonne National Laboratory

Robert Horner: Argonne National Laboratory

For additional information contact:

aburnham@anl.gov

